If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3v^2+19v+20=0
a = 3; b = 19; c = +20;
Δ = b2-4ac
Δ = 192-4·3·20
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-11}{2*3}=\frac{-30}{6} =-5 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+11}{2*3}=\frac{-8}{6} =-1+1/3 $
| .2(d-6)=3d+5 | | X=4(6-3x)5-4x | | 3(x+2)=14x-5 | | b/2-8=3 | | 4/5.q=1 | | 11=4+p | | 2(3x)=2(85-x) | | 3-x=2(85-x) | | .47-1.56=b | | 3x=2(85+x) | | 24x+200=-280+14x | | 13+u=17 | | (8x/7)-1/2=x | | 3x/7+1=7 | | -3x-8=(-2/9)x+2 | | 91=4b-14 | | -3x-8=-2/9x+2 | | 3s–4s=28 | | -952=7(7x-31) | | 2x-6=4x+9 | | 3x-12=12-x | | 3(3x+2)=53 | | -41x−17x=-39 | | 41−17+x=-39 | | 56-2=2b+7 | | 2x-13+2x=4(3x-5)+3 | | 5x-3(3x-2)=46 | | Y=-0.1x^-1 | | -6x+52=118 | | X+y=275 | | 5x^2-2x=3x-5x-5x^2 | | 3x-2+9x=6(7x-2)+5 |